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Efficient Computation of Significance Levels for Multiple Associations
in Large Studies of Correlated Data, Including Genomewide Association
Studies
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Large exploratory studies, including candidate-gene–association testing, genomewide linkage-disequilibrium scans,
and array-expression experiments, are becoming increasingly common. A serious problem for such studies is that
statistical power is compromised by the need to control the false-positive rate for a large family of tests. Because
multiple true associations are anticipated, methods have been proposed that combine evidence from the most
significant tests, as a more powerful alternative to individually adjusted tests. The practical application of these
methods is currently limited by a reliance on permutation testing to account for the correlated nature of single-
nucleotide polymorphism (SNP)–association data. On a genomewide scale, this is both very time-consuming and
impractical for repeated explorations with standard marker panels. Here, we alleviate these problems by fitting
analytic distributions to the empirical distribution of combined evidence. We fit extreme-value distributions for
fixed lengths of combined evidence and a beta distribution for the most significant length. An initial phase of
permutation sampling is required to fit these distributions, but it can be completed more quickly than a simple
permutation test and need be done only once for each panel of tests, after which the fitted parameters give a
reusable calibration of the panel. Our approach is also a more efficient alternative to a standard permutation test.
We demonstrate the accuracy of our approach and compare its efficiency with that of permutation tests on ge-
nomewide SNP data released by the International HapMap Consortium. The estimation of analytic distributions
for combined evidence will allow these powerful methods to be applied more widely in large exploratory studies.

Introduction

The rapid increase in genomic data available to research-
ers, coupled with sharply decreasing experimental costs,
has created opportunities for exploratory genetic studies
of unprecedented size. For example, it is now possible
to screen thousands of candidate genes for disease asso-
ciations at either the sequence or the expression level
(Risch 2000; Schulze and Downward 2001). Also, the
prospect of a genomewide linkage-disequilibrium map
will allow genome scans for association to become as
routine as they already are for linkage (International
HapMap Consortium 2003). Several initial scans have
recently been completed (Ophoff et al. 2002; Ozaki et
al. 2002; Sawcer et al. 2002).

A serious problem for these studies is that a large num-
ber of nominally significant results are expected, even
when there is no true association, because of stochastic
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variation in the data and the large number of tests that
are performed. Furthermore, one cannot be certain at
the outset whether there are any true associations to be
found at all. For this reason, strict significance thresh-
olds have been recommended that control the family-
wise type I error (Risch and Merikangas 1996). At such
low error rates, very large samples must be obtained to
achieve adequate power, making the cost of ascertain-
ment an important factor in study design (Service et al.
2003).

Although the traditional burden is to reject the hy-
pothesis that there are no true associations at all, in
practice, some—perhaps many—true associations are an-
ticipated. Furthermore, it can be more economical to per-
form an initial screening stage with weaker error control
to reduce the candidate loci to a smaller set to which
stronger error control can be applied (Brown and Rus-
sell 1997). For these reasons, attention has turned to
methods that are sensitive to multiple associations while
retaining weak control of the familywise error (Hoh and
Ott 2003; Storey and Tibshirani 2003). One approach
that has shown promise is to combine the strongest
evidence from multiple tests. Motivated by principles of
meta-analysis, the idea is to identify a subset of tests
showing a trend of significance exceeding that of the
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individual tests. Hoh et al. (2001) proposed forming
sums of the k largest test statistics, comparing the sums
with their null distributions, and identifying the most
significant sum. Zaykin et al. (2002) proposed forming
the product of all P values less than a fixed threshold.
Dudbridge and Koeleman (2003) suggested a hybrid of
these methods, namely, the product of the k smallest P
values.

Each of these methods has been shown to give im-
proved power in realistic situations (see also Wille et al.
[2003] and Hao et al. [2004]). However, the lack of
analytic distributions is a major obstacle to their more
widespread use. Although distributions for products of
P values are known when the tests are independent (Zay-
kin 1999; Zaykin et al. 2002; Dudbridge and Koeleman
2003), they do not apply to correlated tests, which arise
in genomewide association studies, particularly when
dense maps of SNPs are used. We will show that, unlike
for Bonferroni-like procedures, increased type I errors
can result from incorrectly assuming independence.
Monte Carlo procedures are often recommended (Zay-
kin et al. 2002)—for example, by random permutation
of phenotypic labels (Churchill and Doerge 1994)—but
can become extremely time-consuming when applied on
such a large scale. Furthermore, follow-up analysis may
require further levels of permutation—for example,
when identifying subsets of the data showing increased
association (Johnson et al. 2002).

With the advent of large-cohort studies (Austin et al.
2003) and the prospect of common marker panels for
genomewide association scans (International HapMap
Consortium 2003), reusability becomes an important is-
sue. If several investigators are conducting the same tests
on different samples, it is inefficient for each investigator
to generate the same permutation distribution. Yet, if a
single supplier generates and distributes the permutation
distribution, it is useful only if critical values are sup-
plied for every combination of tests and every signifi-
cance level. The volume of information involved, remi-
niscent of traditional statistical tables, makes this model
unlikely to be adopted.

Instead of relying on permutation tests, some methods
have been suggested to adjust the tests in a way that
allows independence to be assumed. One approach as-
sumes an effective number of independent tests, such
that the actual tests are an oversampling of some under-
lying independent variables. The effective number could
be estimated by bootstrap resampling (Bailey and Grundy
1999) or by appealing to principal-components analysis
(Cheverud 2001; Nyholt 2004). This approach is a re-
stricted case of the modeling we propose below, and we
will show that the restriction does not sufficiently cap-
ture the full correlation structure, except in some par-
ticular cases that are unlikely to occur on the genome-
wide scale.

Another approach is to sequentially decorrelate the
tests. This can be done by application of a single trans-
formation derived from the correlation matrix (Zaykin
et al. 2002) or by successive greedy transformations
(Wille et al. 2003). The former approach is sensitive to
the ordering of the tests, whereas the latter may lose some
advantages of combining evidence because it favors the
tests with stronger marginal significance. Alternatively, a
step-up linear model may be constructed, starting from
a single variable and adding covariates one at a time
(Cordell and Clayton 2002). However, these approaches
all encounter difficult computational problems as the
number of tests becomes large. For example, methods
using a correlation matrix require inversion of large
sparse matrices, and linear modeling requires likelihood
maximization over many covariates, with an aggregation
of missing data as more covariates are added.

Here, we propose a more efficient application of per-
mutation sampling, in which analytic distributions are
fitted to the permutation samples. We apply the method
to the sum of k largest �log P values from a larger
number of tests. Assuming that k is fixed and relatively
small, we fit extreme-value distributions to the empirical
distribution of the sums. When many values of k are
considered, we fit a beta distribution to the most signifi-
cant sum. Although permutation sampling is required
to generate the empirical distributions, this can be com-
pleted more quickly than a simple permutation test. Con-
ditional on the correlation structure, the procedure need
be performed only once and subsequently allows fast
and accurate computation of significance levels for sum
statistics. The correlation structure is a property of the
study population and the ascertainment criteria, so the
reusability is most applicable to prospective cohort
studies, although it can also be relevant to retrospective
samples. As a special case, our procedure gives a more
efficient method for a standard permutation test.

We illustrate the method on chromosomewide SNP
genotypes released by the International HapMap Con-
sortium (2003). We compare the efficiency of our ap-
proach with simple permutation tests, demonstrate the
effect of assuming independence, and study some oper-
ating characteristics of the combined-evidence approach.

Material and Methods

Fixed Number of Combined Variables

Suppose a study generates statistics for m hypothesis
tests. Denote the P values by Pi and their order statistics
by P(i). Let k be an integer, , termed the1 � k � m
“length.” We consider the partial sum of �log P values,
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equivalent to a truncated product of P values (Dudbridge
and Koeleman 2003)

k

S p � log P .�k (i)
ip1

This is an example of a sum statistic, suggested by
Hoh et al. (2001). Those authors used statistics rather2x

than P values, which should have similar power, but P
values should offer greater flexibility in the context of
genome scans, as we suggest in the “Discussion” section.

The partial sum Sk can be regarded as the maximum
of all sums of length k, which suggests an application
of extreme-value theory. For a large set of independent
identically distributed variables, the minimum and maxi-
mum have distributions of a general form for a wide class
of parent distributions (Gumbel 1958). Here, the sums
are proportional to variables (Fisher 1932). This holds2x

for correlated variables, provided that they can be re-
garded as a stationary process (one whose stochastic
properties are invariant) with independence in the limit
of large distances (Coles 2001). The rapid decay of link-
age disequilibrium (LD) ensures long-range independence
(Reich et al. 2001); we do not investigate stationarity,
but we argue that the model is empirically accurate for
genomic data. The theory has been applied elsewhere to
molecular sequence analysis (Karlin and Altschul 1990)
and to microarray data (Li and Grosse 2003).

When m is large and , the extremal types the-k K m
orem predicts that Sk follows an extreme-value distribu-
tion (for background, see Coles [2001]). We fit the gen-
eralized extreme-value distribution, which has location,
scale, and shape parameters. For our purposes, these
parameters are just mathematical variables that permit
model fitting, but a heuristic interpretation can be made
by observing their behavior when fitted to sums of in-
dependent �log P values. The location is, roughly, pro-
portional to the total number of tests m, conditional on
the sum length k. The scale is proportional to k, con-
ditional on m, and the shape summarizes the correlation
structure among the single tests and the sums of fixed
length.

To fit the distribution of the sum statistics, we generate
a large number of permutation replicates and fit the dis-
tribution by maximum likelihood. In general, the rep-
licates are obtained by a nonparametric combination of
dependent permutation tests (Pesarin 2001). In associa-
tion studies, this can take the well-known form of shuf-
fling trait values among subjects while keeping genotypes

fixed. If is the value of Sk in the ith replicate, the log(i)sk

likelihood is

l(m,j,y)

(i) �1[ ]p � log j � (1 � 1/y) log 1 � y(s � m)j� k{
i

(i) �1 �1/y[ ]� 1 � y(s � m)jk }
for location m, scale j, and shape y. Maximum-likeli-
hood estimates are obtained by numerical optimization;
we used the EVD add-on package to R (r Development
Core Team 2003; Stephenson 2002). The significance level
of the observed data is then calculated from the fitted
analytic distribution. In contrast to a standard permu-
tation test, we use the actual values of the replicate sta-
tistics to calculate the significance, whereas a permuta-
tion test counts only how often they exceed the value in
the observed data. By using more information from the
permutation replicates, we expect to achieve greater ac-
curacy, in addition to parameterizing the permutation
distribution with an analytic model.

Variable Number of Combined Variables

The above procedure applies to a fixed-size subset of
the variables. For best power, the length k might be chosen
to somewhat exceed the anticipated number of true asso-
ciations. When this is unknown, one can form sums for
many lengths and identify which length has the most
significant sum (Hoh et al. 2001). To obtain the overall
significance, we need the distribution of the smallest P
value of the sums of varying length. We propose a beta
distribution, motivated by the fact that order statistics
of independent uniform (0,1) variables have known beta
distributions. The P values of the sums are highly corre-
lated, but we assume that the smallest value follows a
two-parameter beta distribution. We generate permuta-
tion replicates and, within each replicate, form the partial
sums for a range of lengths and calculate their signifi-
cances from the previously fitted extreme-value distribu-
tions. The smallest of those P values is then the statistic
for that replicate. If is the smallest P value in the(i)pmin

ith replicate, the log likelihood is

l(a,b)

G(a � b) (i)p log � (a � 1) log p� { min( )G(a)G(b)i

(i)�(b � 1)log(1 � p )}min

for shape parameters a and b. Maximum-likelihood es-
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timates are obtained by numerical optimization, and the
significance level of the observed data is obtained from
the fitted distribution.

Effective Number of Tests

We wish to test the assertion that there is an effective
number of independent tests that could be used in tra-
ditional adjustments (Bailey and Grundy 1999; Cheverud
2001; Nyholt 2004). This can be done by fitting beta
distributions, as above. If there is an effective number
of tests, a real number m′ can be found, such that the
minimum P value follows the Šidák (1967) correction

, which is the beta (1,m′) distribution. As
′m1 � (1 � p )min

the alternative, we allow the minimum P value to follow
the two-parameter beta distribution, and we test whether
the first parameter is 1 by applying the likelihood-ratio
test for nested models. A significant likelihood ratio re-
jects the hypothesis that one parameter is sufficient and
that there is an effective number of independent tests.

Power of Variable Number of Combined Variables

The choice of the sum length k can be problematic.
The optimal length depends on the number of true as-
sociations and their effect sizes, both of which are un-
known. Often, a reasonable prior estimate can be made.
For example, genome scans are currently designed under
an assumption of no more than, say, 20 true associa-
tions, since models with more loci specify effect sizes so
small that prohibitive sample sizes are required (Prit-
chard 2001; Schliekelman and Slatkin 2002). A relevant
question is whether misspecification of a fixed length has
a greater cost than does estimation of the most signifi-
cant length.

We studied this by simulating a large exploratory study
consisting of 10,000 independent tests. For true associ-
ations, we simulated variables with the noncentrality2x(1)

parameter (NCP) chosen to give maximum power of
∼80% (at ap0.05) over the range of sum lengths 1 �

. For the remainder, we generated uniform P val-k � 500
ues on (0,1). This approach avoids making assumptions
about genetic effects and LD, but it assumes that suffi-
ciently powerful studies can be designed. We first gener-
ated 10,000 replicates of the null distribution with no
true associations, and we fitted extreme-value distribu-
tions to the fixed length sums and a beta (0.767,1.939)
distribution to the smallest P value of the sums. We then
simulated studies with 5, 10, 50, and 100 true associa-
tions, with 10,000 replicates for each, and plotted the
power for each fixed-length sum together with the power
for variable length.

Comparison with Permutation Test

Since permutation sampling is required to fit the ex-
treme-value and beta distributions, we compare efficiency
with standard permutation tests. Here, a permutation
test consists of randomly assigning traits among subjects,
while keeping the genotype data fixed. Sum statistics are
calculated in each replicate and compared with the sta-
tistic in the original data. The significance level is the
proportion of replicate statistics exceeding the observed
statistic.

We compare efficiency for a fixed P value by consid-
ering how many replicates are needed to achieve a given
accuracy, measured by the length of the 95% CI for P.
Since a permutation test is equivalent to an estimation of
a binomial probability, the CI is given by normal theory.
For our approach, we obtain the CI by a parametric boot-
strap. We generate a number of random deviates from
a fixed extreme value or beta distribution, each deviate
representing one permutation sample. We refit a distri-
bution to the deviates and from it calculate the signifi-
cance of the P-quantile point of the generating distri-
bution. The CI is estimated by repeating this procedure
a large number of times. From this, we obtain the num-
ber of binomial trials needed to achieve the same ac-
curacy, given as

24Z P(1 � P)0.975 ,2(CI)

where is the 97.5th percentile point of theZ p 1.960.975

standard normal distribution and CI is the length of the
bootstrap CI for our procedure.

Data Sets

We applied these methods to chromosomewide geno-
types from release 6 of the International HapMap Con-
sortium (2003). We obtained genotypes for 20,243 SNPs
on chromosome 18 and 13,620 SNPs on chromosome
21, which were the two most densely genotyped chro-
mosomes. Genotypes were available for 90 subjects from
CEPH pedigrees. For the proof of concept, we tested
each SNP individually, without performing any blocking
or grouping of SNPs, although such grouping is likely
to occur in real scans. We regarded the subjects as un-
related, for the purpose of generating null distributions.
This does not bias the distribution of P values, which is
our main interest, but does increase the correlation be-
tween loci, since the length of shared haplotypes is
greater than in a population of unrelated subjects. There-
fore, these data represent a more problematic case for
correlated SNP data than would usually be the case but
could also be regarded as a reduced-scale copy of whole-
genome data.
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For both chromosomes, we generated empirical null
distributions for the sum statistics by randomly assigning
“case” status to half of the subjects and “control” status
to the other half. Most software packages for genetic asso-
ciation have severe memory and time requirements when
working with this volume of data. We wrote a custom
program using compact data structures, to calculate like-
lihood-ratio tests of allelic association, form sum statis-
tics, and permute affection status. The program is avail-
able from the authors on request. We performed 10,000
random permutations and fitted extreme-value distribu-
tions to the partial sums for and a beta1 � k � 100
distribution to the smallest P value of the sum over that
range of k.

We were interested in the relationship between the
parameters of the fitted distributions and the parameters
of the sum statistics. To explore this, we plotted the lo-
cation, shape, and scale parameters of the fitted distribu-
tion against the sum length. We used quantile-quantile
plots to show that the analytic distributions gave a good
fit to the empirical distributions. We used the HapMap
data to study the effect of assuming independence when
the data are correlated, by applying the exact distribu-
tion for independent tests to the 95th percentile of the
empirical distribution. If the exact distribution is accu-
rate, it will give a P value of .05 for each sum length.
If it is conservative, the P value will be 1.05; if it is
liberal, the P value will be !.05.

Results

Accuracy of Fitted Distributions

In figure 1, we show the location, scale, and shape
parameters of the fitted distribution plotted against the
length of the sum. The location and scale parameters have
a strong log-linear correlation with the length, deviating
from unity only by sampling variation. The relationship
is less clear for the shape, but it does show a continuous
form. Therefore, the sum statistics can be modeled as a
whole by a smooth family of extreme-value distributions,
for which the location and scale can be parameterized
by the slope and intercept of fitted lines. For the best
accuracy, the shape should be specified explicitly, al-
though a polynomial spline might provide an acceptable
approximation. The distributions of the sum statistics
for the chromosome-18 SNPs can be summarized as fol-
lows: Fixed length sum has the generalized extreme-
value distribution. .0.898Location p 9.526 # k Scale p

. Shape p {�0.0453 for , �0.05210.82051.269 # k k p 1
for , �0.0524 for , …}.k p 2 k p 3

Figure 2 shows quantile-quantile plots for the empiri-
cal and fitted distributions for lengths 10 and 100. The
extreme-value distribution gives a good fit, although there
is a liberal deviation in the far tail. The fit is adequate

for declaring chromosomewide significance at conven-
tional levels. We can obtain a more accurate fit by noting
that the distribution for independent variables is con-
structed from beta and gamma distributions (Dudbridge
and Koeleman 2003) and therefore fitting a similar con-
struction to the correlated variables. However, this turns
out to be very computationally intensive and numerically
unstable; furthermore, it applies only to sums based on
P values and not to those of statistics, whereas the2x

extreme-value distribution is more generally applicable
and accurate for our present purposes.

Figure 3 shows quantile-quantile plots of the empirical
and fitted distributions of the smallest P value for 1 �

. The beta distribution gives a good fit over thek � 100
whole range, confirming that it is an appropriate model
for the smallest P value. The linear correlation coeffi-
cients for these plots were .9995 and .9997. For chro-
mosome 18, the fitted parameters of the beta distribution
were (.8032,1.377), and, for chromosome 21, the pa-
rameters were (.7932,1.342).

Effect of Ignoring Correlation

We studied the effect of assuming independence when
the tests are correlated. Although this assumption is con-
servative for the Bonferroni adjustment, it is not gen-
erally true for sum statistics. Figure 4 shows the signifi-
cance of the 95th percentile of the permutation distri-
bution for the chromosome-18 data, by use of the exact
distribution under the assumption of independence. The
sum of length 1 is less significant than the nominal level,
which is consistent with the conservative property of the
Bonferroni adjustment. However, the longer-length sums
show an increasingly liberal bias as the sum length in-
creases. In contrast, the analytic significance of the fitted
distribution is close to the nominal level across the range
of lengths. From these data, we can conclude that as-
suming independence for sum statistics of length 11 can
lead to liberal as well as conservative tests, in a manner
that is dependent on the sum length, significance level,
and number of tests. It is therefore important to have
accurate distributions available for the sum statistics.

Effective Number of Tests

We tested whether an effective number of independent
tests sufficiently describes the correlation structure. We
compared the maximum likelihood of the minimum P
value under the two-parameter beta distribution with
the likelihood with the first parameter set to 1 (see the
“Material and Methods” section). In both data sets, the
likelihood ratio was highly significant ( and2x p 360
322, respectively, on 1 df). Furthermore, the two-param-
eter beta distribution gave an excellent fit (data not
shown). Therefore, we reject the hypothesis that there
is an effective number of tests that allows the use of
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Figure 1 Parameters of the extreme-value distribution for Sk as function of length k. A, Location, chromosome 18. B, Location, chromosome
21. C, Scale, chromosome 18. D, Scale, chromosome 21. E, Shape, chromosome 18. F, Shape, chromosome 21.

traditional corrections. We can interpret this by regard-
ing the minimum P value to be the sum of length k p

when the tests are independent and concluding that1
the correlation structure implies an effective sum length
as well as an effective number of tests.

Power of Variable Number of Combined Variables

In figure 5, we compare the power that is the result
of optimization of the sum length for significance with
the power when the sum length is fixed. This shows that
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Figure 2 Quantile-quantile plot of extreme-value distribution for Sk. A, Length 10, chromosome 18. B, Length 10, chromosome 21.
C, Length 100, chromosome 18. D, Length 100, chromosome 21.

very little loss of power results from varying the sum
length. For 5, 10, and 50 true associations, the difference
in power is only 2%–3%, and it would be even smaller
if a shorter range of lengths were considered. The dif-
ference is ∼10% for 100 true associations, because the
most powerful length is outside the range considered,
because of the small NCP of the true associations. Note,
however, that this scenario is unlikely in genome-asso-
ciation scans. On the other hand, fixed lengths do have
higher power over a range of values, and there is some
margin for error with the use of fixed lengths, but, out-
side the optimal range, the power of fixed lengths drops
off sharply.

Although there is little cost in overall power, varying
the length does not give a reliable estimate of the number
of true associations. In each of the situations we con-
sidered, the range of lengths for which the minimum P
value was achieved varied over the whole range of 1–
500. The median lengths of the most significant sum,
for the four situations in figure 5, in the order shown,

were 4, 7, 51, and 133, which is fairly accurate, but the
interquartile ranges were 6, 17, 143, and 432, and the
mean lengths were 25, 37, 129, and 219, indicating both
a high variability and upward bias. Therefore, varying
the length is a useful way to improve power when there
is very little idea of the number of true associations, but
it should not be relied on to estimate the number of true
associations, in particular, to determine the number of
follow-up loci.

Comparison with Permutation Test

We compared efficiency with a permutation test for
the sum of length 10 in the chromosome-18 data. The
extreme-value distribution fitted to this sum was used
to generate a parametric bootstrap CI for our method,
which was matched to the normal theory CI for the
binomial permutation test. Table 1 shows the number
of binomial replicates needed to achieve the same ac-
curacy as with our method with 1,000 and 10,000 rep-
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Figure 3 Quantile-quantile plot of beta distribution for the minimum P value for Sk. A, Chromosome 18, parameters (.8032,1.3766).
B, Chromosome 21, parameters (.7932,1.3423).

Figure 4 Effect of assumption of independence in correlated
tests. Solid line shows the P value of the 95th percentile of the empirical
distribution, under assumption of independent tests. Dotted line shows
the P value according to the fitted extreme-value distribution.

licates, for a range of significance levels. For example,
at , the permutation test requires 1,511 replicatesP p .2
to reach the accuracy achieved by our method with
1,000 replicates. The efficiency is greater at stronger sig-
nificance levels: at , the permutation test re-P p .001
quires over three times as many replicates as does our
method. At each significance level, the relative efficiency
is the same for 1,000 and 10,000 deviates. Very similar
results were obtained for other extreme-value distribu-
tions (data not shown). Table 2 gives the same com-
parison for the beta distribution fitted to the smallest P
value of the sums. A similar pattern is seen, with the
efficiency being even greater at strong significance levels.
This is because two parameters are fitted rather than
three, which results in smaller SEs. At , theP p .001
permutation test requires 113 times as many replicates
as does our method. Thus, even if we fit distributions
to permutation replicates only once, our method pro-
vides an improvement in efficiency over standard permu-
tation tests.

Discussion

The realization that complex heritable traits require large
sample sizes to detect small effects has led to calls for
more efficient methodology for detection of multiple as-
sociations (Hoh and Ott 2003). Combination of the
strongest evidence is an approach that shows promise
for identifying the pertinent effects while maintaining
familywise error control. However, large-scale genomic
studies encounter problems with correlated data that can
be satisfactorily overcome only by permutation sam-
pling. Because these procedures are time-consuming and
might be duplicated by multiple investigators, we pro-
pose analytic distributions that can be fitted to the per-

mutation distributions, which would give both a more
efficient alternative to one-off permutation tests and a
reusable calibration for repeated use.

Our results suggest that, for , a 40% reduc-P p .05
tion in computation is possible compared with a stan-
dard permutation test. This improvement in efficiency
can translate to significant time savings. The results re-
ported here were computed on recent Sun hardware with
a 900 MHz UltraSparc III processor. We used a simple
test of allelic association for single SNPs, using data on
two of the shorter autosomes. Our software took ∼5 h
to compute 10,000 permutation replicates for the two
chromosomes. A genomewide association scan may in-
volve testing 100,000 haplotype blocks of 30 kb, with
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Figure 5 Power of fixed-length sum compared with variable-length sum, for 10,000 tests. A, Five true associations with x2 NCP 15.
B, Ten associations with NCP 11. C, Fifty associations with NCP 5. D, One hundred associations with NCP 3.

multilocus tests conducted on each block. The number
of tests is about three times as large, giving an extrapo-
lated run time of 15 h, but multilocus tests require more
computation, so that the total run time would be on
the order of days. A 40% reduction can therefore have
a significant impact. Subsequent tests of the same hy-
potheses in the same population require just a single
analysis followed by reference to an analytic distribu-
tion, which takes only a few minutes. However there is
a need for efficient software that can handle such large
volumes of data. For example, COCAPHASE 2.4 (Dud-
bridge 2003) took ∼4 d to perform the same calcula-
tions, whereas SUMSTAT (Hoh et al. 2001) could not,
as supplied, input all the marker data. (In smaller data
sets, its performance was similar to that of our own
program.)

The parameters of the extreme-value and beta dis-
tributions can be fitted once and then distributed with
other descriptive data for screening panels, such as map

locations and allele frequencies. In principle, the sup-
plier of the marker panel could calibrate these distribu-
tions to very high accuracy, allowing end users to rapidly
calculate significance levels for single experiments. How-
ever, it is important to recognize that the calibration is
conditional on the correlation structure. Different marker
sets and different populations will have different struc-
tures, and different samples from the same population
can also, in principle, exhibit different correlation.
Thus, the reusability is most applicable to cohort stud-
ies, but markers can be calibrated for retrospective sam-
pling, if the sample used for calibration is sufficiently
large to minimize the variation in correlation structure.
Furthermore, correlation can depend on ascertainment,
because subjects that are selected according to some
genetic features are expected to exhibit more LD in the
vicinity of the relevant loci than the general population.
It is therefore preferable to calibrate the null distribu-
tions by use of unselected subjects, but this may un-
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Table 1

Efficiency of Extreme-Value Approximation Compared with Permutation Test

P

NO. OF BINOMIAL REPLICATES NEEDED TO ACHIEVE ACCURACY

OF CURRENT STUDY METHOD WHEN

an p 1,000 an p 10,000

Length of 95% CIb

No. of Binomial Trials
with Same CI Length Length of 95% CIb

No. of Binomial Trials
with Same CI Length

.2 .0403 1,511 .01264 15,397

.1 .0292 1,623 .00918 16,408

.05 .0209 1,657 .006597 16,769

.01 .00894 1,902 .002813 19,220

.001 .00208 3,543 .000654 35,938

a Number of random deviates from extreme-value distribution.
b Length of 95% CI for the P value, estimated by parametric bootstrap.

Table 2

Efficiency of Beta Approximation Compared with Permutation Test

P

NO. OF BINOMIAL REPLICATES NEEDED TO ACHIEVE ACCURACY

OF CURRENT STUDY METHOD WHEN

an p 1,000 an p 10,000

95% CIb

No. of Binomial Trials
with Same CI Length 95% CIb

No. of Binomial Trials
with Same CI Length

.2 .0397 1,562 .0128 15,032

.1 .0297 1,570 .00959 15,045

.05 .0201 1,809 .00650 17,034

.01 .00667 3,420 .002155 32,745

.001 .00106 13,538 .000340 132,778

a Number of random deviates from extreme-value distribution.
b Length of 95% CI for the P value, estimated by parametric bootstrap.

derestimate the correlation around true associations, af-
fecting power.

The extreme value and beta distributions give good
fits for the HapMap data used here, but this property
should not be automatically assumed. In particular, if
the number of tests is not much greater than the sum
length, then the extreme-value distribution may not be
a good fit, though our experience is that it is a very
robust model. Our approach should always be used in
conjunction with quantile-quantile plots or goodness-of-
fit tests to confirm model accuracy.

Our results show that the assumption that tests are
independent can lead to inaccurate and biased results.
If one ignores the correlation entirely, both liberal and
conservative tests are possible, depending on underlying
conditions that may not be understood. If the total num-
ber of tests is adjusted downward to an effective number
and independence is then assumed, the resultant distri-
bution can be significantly different from the true distri-
bution, so this approach cannot be guaranteed to capture
the full correlation structure. In the cases of complete
dependence or complete independence, an effective num-
ber clearly applies, but we suggest that, in general, this

approach is accurate only when the tests can be parti-
tioned into sets with complete dependence within sets
and complete independence between sets. This is ex-
tremely unlikely on the genomewide scale.

A different approach to detecting multiple associations
aims to control the false-discovery rate (FDR) (Benja-
mini and Hochberg 1995). In some ways, this is com-
plementary to the combined-evidence approach, a salient
difference being that the FDR makes assertions about
individual tests. Combined-evidence methods identify a
candidate set for follow-up but give a significance level
only for the whole set of tests. However, if there is an
informal aim to proceed with the highest number of
true associations and a sufficiently nondistracting num-
ber of false associations, then the combined-evidence
approach identifies a good quality follow-up set (Wille
et al. 2003; Hao et al. 2004). It is tempting to choose
the follow-up set from the most significant sum length,
but, although this appears to result in little net loss in
power, it should not be relied on to predict the number
of true associations, because the optimal sum length has
high variance. Other methods that estimate the number
of true associations from the distribution of P values
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(Pounds and Morris 2003; Storey and Tibshirani 2003)
also give highly variable estimates when the number of
associations is small. It may be more prudent to select
follow-up loci according to biological considerations or
individually adjusted tests, conditional on a significant
sum statistic.

Although FDR methods detect a high average number
of associations (Benjamini and Hochberg 1995; Sabatti
et al. 2003), the power to detect at least one association
is not much greater than Bonferroni-like procedures
(Simes 1986; Dudbridge and Koeleman 2003). This
means that sample sizes for FDR analysis are not sig-
nificantly smaller than for traditional methods, unless
one compromises on the chances of obtaining any result
at all. The increased power of sum statistics comes from
the combination of evidence while error control for in-
dividual tests is forfeited. FDR methods are most ap-
plicable when many associations are present, with suf-
ficiently strong effects that the prior power is high. In
that situation, the false-discovery proportion has smaller
variance, so investigators can be more confident that the
target rate is achieved (authors’ unpublished data). These
conditions are more likely to be met in expression-array
experiments than in linkage-disequilibrium scans.

Combining P values is a more balanced approach than
summing the test statistics, because P values are usually
identically distributed, whereas test statistics may not
be. In particular, genomewide association scans will be
designed around blocks of varying length and diversity
(Weale et al. 2003), and it will be more efficient to per-
form blockwise tests than individual tests of markers
within blocks (Chapman et al. 2003). It makes sense to
combine all the evidence within blocks and to regard
the blockwise tests as the correlated units in the sum
statistics. This strategy inevitably produces statistics with
different degrees of freedom—therefore on different
scales—whereas the P value is on a common scale. On
the other hand, accurate P values may not always be
available, such as when distributional assumptions are
not met. In this case, it can be more convenient to work
with test statistics, and the extreme-value distribution
can still be used to model the permutation distribution.

We have considered the sums of fixed length and the
most significant fixed-length sum, but these are not the
only possible combinations. For example, sums could
be constructed on the basis of all tests that are significant
at a nominal level (Zaykin et al. 2002). The number of
nominally significant tests follows a binomial distribu-
tion, so that the sum can be regarded as the maximum
of a set of variables whose distribution is a mixture of
distributions for fixed length sums. This also allows the
extreme-value distribution to be applied in this case.
More generally, our approach is applicable whenever
the null distribution falls within a parametric class of
analytic distributions.

An economical approach to genome scanning is to
screen all markers in the first stage and only the sig-
nificant markers in the second. This strategy reduces the
total genotyping cost and has been proposed both for
individual genotyping and for pooling protocols (Saga-
topan et al. 2002; Sham et al. 2002). Combined-evi-
dence methods are a natural choice for the first stage,
providing a powerful method to identify follow-up loci,
while controlling the type I error for the null hypothesis
that there are no genetic effects at all. They provide an
appealing trade-off between reducing the size of the ex-
ploratory space and controlling the error of individual
tests, giving confidence and justification for the follow-
up testing. The efficient approach we propose for ap-
plying these methods on genomewide scales will allow
them to be applied more widely in forthcoming studies.
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